
 

 
 
2.1. Introduction 
 

Chapter 2 
 
Modeling copper cables and PCBs 
 

A proper channel model is a good basis for a correct understanding of any transmission 
system. The goal of this chapter is to identify an accurate time-domain model with a focus on 
high-speed time-domain (transient) simulations. Both conductor and dielectric loss need to be 
modeled. We compare the model with measurements on cables and printed circuit boards 
(PCBs) in the time and frequency domains to be able to assess its accuracy. 
 
Well-known textbooks [Gardiol], [Grivet], [Chipman], [Ramo] typically describe accurate 
models for the skin-effect magnitude and phase shift, and some also describe an analytical 
skin-effect step response. However, the modeling of dielectric loss at high frequencies is still 
a developing field and has received much attention recently. For high-speed serial links over 
printed circuit boards, accurate modeling is especially important. Modeling the complex 
dielectric permittivity and the loss tangent as frequency-independent values leads to non-
causal results, which is especially problematic when accurate time-domain simulations are the 
goal [Hall], [Djordjević]. Therefore we focus on identifying a causal time-domain model. As 
a basis, we use the Kramers-Kronig relations [Ramo], which express a mathematical 
relationship between real and imaginary parts of the response functions. In this chapter, we 
use a recently published model for dielectric loss in printed circuit boards [Djordjević] to  
model the dielectric part of the cable loss. It  is shown that the combination of the skin-effect 
model and this dielectric model gives a causal time-domain impulse response, using a 
minimum of model parameters. 
 
Models only have meaning if they can accurately predict measurement results, so we need to  
thoroughly check the model predictions. We describe two types of measurements in this 
chapter: network analyzer measurements and time-domain Transmissometry (TDT) 
measurements. Each type of measurement has its particular use. A magnitude transfer plot 
gives direct insight into the channel loss at a certain frequency, for example at the Nyquist 
frequency. The time domain impulse response, on the other hand, gives a direct intuitive 
insight into intersymbol interference (ISI). 
 
Concerning the frequency domain, measurement of the magnitude is more straightforward  
than of the phase. Due to the long propagation delay of the long cables that we use, and the 
high signal frequencies, the phase rotates very rapidly. Using this data to obtain the cable  
impulse response using an inverse Fourier transform can be hard, since the data needs to be 
corrected for noise and measurement artifacts. We can, of course, construct the ‘minimum-
phase’ as described in [Bode] but without measuring we cannot be sure whether the cable is  
actually a minimum-phase network (after subtraction of the propagation delay). Therefore, we 
wish to avoid the need for accurate phase measurements. Our aim is to find a model which  
can be matched with only the measured magnitude, and then, after fitting the model, to obtain  
the phase from the model. This magnitude and phase information is then input to the inverse 
Fourier transformation. 
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Concerning the time domain, wideband (10GHz and higher) time-domain equipment has  
recently become available that enables direct measurement of the step response. Through  
differentiation, the impulse response can be obtained. The differentiation adds noise to the 
measurements, and the generated step has a limited rise time. This limits the accuracy of the  
time domain measurements so it is important to have frequency domain measurements as  
well. We fit the model with the measured frequency domain magnitude data and check it in 
the time domain against the measured impulse response. Measurements in both domains give 
more certainty in assessing the model’s accuracy.  
 
In this chapter, we model and measure coaxial cables, twisted pair cables, and printed circuit 
boards. It is shown that both the skin effect equations and the dielectric equations obey the 
Kramers-Kronig relations, guaranteeing causality. 
 
In section 2.2 we first define the transfer function and the complex propagation constant in the 
RLGC form, and the constraints imposed on it by causality. Next, in section 2.3, all the 
RLGC parameters, and then the complete frequency domain transfer function (magnitude and 
phase) are calculated by analyzing both the skin effect and the dielectric loss. The subject of  
section 2.4 is the time domain impulse responses. Next, in section 2.5, measurement results 
are given for cables and printed circuit boards, and compared to the model. 
 
2.2. Propagation constant and Kramers-Kronig relations  
 
2.2.1. Propagation constant 
 
The frequency domain transfer function H(jω) of a perfectly matched lossy copper 
transmission line is given by: 

 H ( jω) = e −γl ,  (1) 

where l is the length of the cable, and H(jω) is defined as the ratio between the output and 
input voltages of the cable (Vout and Vin respectively): 

Vout ( jω)
 H ( jω) = .  

V in ( jω) (2) 

The complex propagation constant γ is defined as [Gardiol], [Grivet], [Chipman], [Ramo]:  

 γ = (R + jωL)(G + jωC) , (3) 

where R is the distributed series resistance (Ω/m), L is the distributed inductance (H/m), G the 
distributed parallel conductance (S/m), and C the distributed capacitance (F/m), as shown in 
Fig. 1. 
 
The actual values of the RLGC parameters are determined in the next sections, by analyzing  
the skin effect and the dielectric loss.  
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Fig. 1. RLGC representation of an infinitesimally small section of the transmission line. 

2.2.2. Kramers-Kronig relations 

The transfer function H(ω) is subject to a strict set of rules, because it is the Fourier transform  
of the transmission line’s impulse response. This transmission line is a physical system, which 
imposes the two constraints described below. 
 
(1) A physical system can only have a causal impulse response (no reaction before an action), 
so the following needs to be true: 

 h(t) = 0 t < 0 . (4) 

This causality requirement for h(t) enforces a strict relation  between the real and imaginary 
parts of its Fourier transform.  This Fourier transform is a complex analytic function in the  
upper half plane. 
 
(2) The impulse response of a physical system is a real function. As a result of this, its Fourier 
transform  H(ω) has a special property. The values at positive frequencies are the complex 
conjugate of the values at negative frequencies:  

 H (−ω) = H *(ω) . (5) 

When condition (1) is valid, the Kramers-Kronig relations apply to the real and imaginary  
parts of the Fourier transform [Ramo]. These mathematical relations connect the real and  
imaginary parts of a complex analytic function in the upper half plane for the response 
function [Arabi], [Djordjević]. They allow us to calculate the imaginary part of the response, 
knowing only the real part, and vice versa. They are a special case of the Hilbert transform 
[Djordjević]. The symmetry implied by condition (2) simplifies the Kramers-Kronig relations  
such that their integration interval runs from  zero to plus infinity, instead of from minus 
infinity to plus infinity. For the complex function: 

 X (ω) = X r (ω) + i ⋅ X i (ω) , (6) 

the simplified Kramers-Kronig relations are [Ramo]:  

2 ∞ ω' X (ω' )
 X (ω) = PV i

r ∫ dω' ,
π ω' 2 −ω 2

0 (7) 

and 
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2 ∞ ωX r (ω' )
 X i (ω) = − PV ∫ 2 dω' ,

π 0 ω' −ω 2
(8) 

where PV denotes the Cauchy principal value, necessary for calculation because the functions  
have a discontinuity at ω’=ω. 
 
We use the Kramers-Kronig relations throughout the rest of this chapter, to make sure that we 
obtain a causal impulse response. 
 

 

 
 

 

2.3. Frequency domain equations 

In this section, we calculate the values for the RLGC parameters. First, in subsection 2.3.1, 
‘R’ and ‘L’ is calculated by analyzing the skin effect, and next, in subsection 2.3.2, ‘C’ and 
‘G’ is calculated by analyzing the dielectric loss. 

2.3.1 Conductor losses: the skin effect 

The skin effect is the phenomenon that the penetration depth of electromagnetic (EM) waves 
into a non-ideal conductor is dependent on the frequency, leading to a frequency dependent 
series resistance and inductance. High-frequency current flows only in the skin of the 
conductor; hence the term “skin effect”. It has effects on ‘R’ and on ‘L’: the decreasing EM 
wave penetration depth reduces the effective usable conductor area, while it also decreases the 
internal inductance (internal to the wire) and the magnetic field caused by this current. The  
skin effect was accurately described as long ago as 1934 [Schelkunoff]. For completeness,  
and for later use in our measurements, we give the formulas below. 
 
In 2.3.1.1 we calculate the distributed resistance R and in 2.3.1.2 the distributed inductance L. 
Next, in 2.3.1.3, we show that the Kramers-Kronig relations hold for the complex impedance 
formed by R and L. 
 
2.3.1.1. R: distributed resistance 
 
In our analysis we first look at the effective conductor resistance. This resistance increases 
continuously with frequency. The current density decreases gradually from the skin to the 
conductor center. The effective wave penetration depth ∂s, defined as the penetration distance 
at which the current density is attenuated by 1 neper (8.69dB), is related to angular frequency, 
electric conductivity σ and magnetic permeability μ as follows [Gardiol], [Grivet], [Chipman],  
[Ramo]:   

2 
 ∂ s = .

ωμσ (9) 
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Combining penetration depth with wire radius, the skin effect cutoff angular frequency ωsa  
(where the skin depth is equal to the radius) can be calculated for a circular conductor 
[Gardiol], [Grivet], [Chipman], [Ramo]:   

2
 ωsa,x = ,

x 2μσ (10)  

where x is the radius of the conductor. The cutoff frequency is independent of cable length. 
 
Well below this cutoff frequency, the EM waves use the whole conductor area and the 
distributed conductor resistance (without return path) is equal to its DC level [Gardiol], 
[Grivet], [Chipman], [Ramo]:   

1
 R DC ,sin gle = .

σπx 2 (11)  

For example, for the RG-58U coaxial cable, the cutoff frequency is as low as 22kHz. Above 
the cutoff frequency, the distributed AC wire resistance RAC can be calculated as [Gardiol], 
[Grivet], [Chipman], [Ramo]:  

 RAC = λ ω . (12)  

For a coaxial cable, λ is equal to [vdPlaats]:  

1 ⎛ 1 1 ⎞ μ 
 λc = ⎜ + ⎟ ,

2π ⎝ a b ⎠ 2σ (13)  

where a is the radius of the center conductor, and b the distance from the center to the shield  
(see Fig. 2(a)). For the differential pair [vdPlaats]: 

2D μ 
 λd = ,

πd D2 − d 2 2σ (14)  

where d is the diameter of the either one of the two conductors  and D is the distance between 
the centers of the two conductors (see Fig. 2(b)).  

     
For a PCB microstrip, the λ parameter is given by [Svensson]:  

1 μ 
 λp = , 

w 2σ (15)  

where w is the track width. 
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(a) 

(b) 

Fig. 2. Cable cross-sections. (a) Coaxial cable. (b) Differential pair. 

 
2.3.1.2 L: distributed inductance 
 
The total distributed conductor inductance L consists of an internal and external component  
[Gardiol], [Grivet], [Chipman], [Ramo]:   

 L = L e + L i . (16)  

The frequency-independent external inductance Le characterizes the relation between external 
flux and total current in the conductor, and can be estimated for the coaxial cable as [Gardiol], 
[Grivet], [Chipman], [Ramo]:   

μ 
 Le,c = ln(b / a) ,

2π (17)  

and for the differential pair [Gardiol], [Grivet], [Chipman], [Ramo]:   

μ −1 ⎛ D ⎞
 Le,d = cosh ⎜ ⎟ .

π ⎝ d ⎠ (18)  

For estimating the distributed external inductance of the PCB microstrip, we can use the well 
known design rule [Johnson]: 

 L −7 ⎛ 5.98d ⎞
e,s = 2 ⋅10 ⎜ ⎟ ,

⎝ 0.8w + h ⎠ (19)  

where d is the trace height above the groundplane (dielectric distance) and h is the trace  
thickness. 
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The internal inductance Li of the conductor is the relation between internal flux and current 
inside the conductor, and it is affected by the skin effect. This Li is calculated as [Gardiol],  
[Grivet], [Chipman], [Ramo]:   

λ
 Li = . 

ω (20)  

From Eq. 20, it can be seen that Li decreases continuously with frequency. 
 
2.3.1.3. Kramers-Kronig relations between R and Li 
 
The Kramers-Kronig relations can be applied to the skin-effect formulas for R and Li. For this 
purpose, we define the internal (skin) impedance Zi as follows:  

 Z i = R + jωL i , (21)  

where R the resistance and Li the internal inductance. Described in a different way, it is the 
ratio of the longitudinal potential difference over a unit length of the conductor to the 
longitudinal current in the conductor [Chipman]. To show that the internal impedance 
satisfies the Kramers-Kronig relations, we equate it with Eq. 6:  

 R + jωLi = X r (ω) + jX i (ω) . (22)  

Substituting Xr(ω)=λ√(ω) in Eq. 8, we obtain [vEtten]:  

2 ∞ ωλ ω ' 
 X i (ω) = − PV ∫ 

0 ω ' 2 dω ' = λ ω ,
π −ω 2 (23)  

which shows that the causality condition is satisfied, because: 

λ
 jωLi = jω = λ ω = jX

ω i (ω) . 
(24)  

(Compare Eq. 20.) 
 
Alternatively, the relation can be considered from the viewpoint of the conservation of energy 
[Ramo]. The internal (skin) impedance has to obey the law of the conservation of energy. The 
energy that is dissipated by the resistance cannot be stored in the magnetic field [Hall]. Thus 
when the resistance increases with increasing frequency, the internal inductance needs to 
decrease. 
 
With a real conductance σ, the resistance and internal reactance of a plane conductor are equal 
at any frequency [Ramo]. Therefore the internal impedance always has a phase angle of 45 
degrees. 
 
2.3.2. Dielectric Loss 
 
Continuing the calculation of the RLGC parameters, we now calculate the ‘C’ and ‘G’ 
parameters by analyzing the second loss effect: the dielectric loss. 
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The dielectric loss is caused by the conversion of electrical energy to other domains by the 
dielectric between the two conductors in the cable, mainly as a consequence of dielectric 
polarization and relaxation. 
 
A crossing frequency can be found beyond which the dielectric loss starts to predominate over 
the skin effect. The skin effect dominates at low frequencies in any cable, and dielectric loss 
dominates at high frequencies. Therefore, for cables errors in modeling the dielectric loss are 
usually not very visible. For high speed serial links over printed circuit board traces, the 
situation is different. The dielectric in FR4, made from glass fiber and epoxy, has much 
higher loss than the polyethylene or specially designed low-loss (foamed or air) dielectric in 
cables. Therefore, in FR4, the dielectric loss predominates over the skin loss already at low  
frequencies. The recent work on high-speed broadband cable and backplane data-
communication systems has revitalized interest in channel models that remain accurate in the 
GHz range. Indeed, it is a very topical subject: recently many publications have been devoted  
to the challenge of modeling dielectrics [Djordjević], [Hall]. Jonscher wrote in 1999 that 
‘dielectric relaxation in solids represents one of the most intensely researched topics in 
physics’ [Jonscher]. 
 
In 2.3.2.1, the distributed capacitance C is calculated. In 2.3.2.2, the distributed shunt 
conductance G is calculated, and the modeling of the loss tangent is discussed. 
 
2.3.2.1. C: the distributed capacitance 
 
For calculating the distributed capacitance C, we first introduce the frequency-dependent 
complex dielectric permittivity ε, which is dependent on the dielectric material:  

 ε (ω) = ε ' − jε '' . (25)  

The distributed parallel capacitance in a coaxial cable is given by [Gardiol], [Grivet], 
[Chipman], [Ramo]:  

2πε ' 
 Cc (ω) = ,

ln(b / a) (26)  

and, for a differential pair, by [Gardiol], [Grivet], [Chipman], [Ramo]   

πε ' Cd (ω) = . 
 −1 ⎛ D ⎞cosh ⎜ ⎟ 

⎝ d ⎠ (27)  

For the estimating the distributed capacitance of the PCB microstrip, we can use the well 
known design rule [Johnson]: 

⎛ ε ' ⎞
2.64 ⋅10−11 ⎜ +⎜ 1.41⎟ ⎟ε ⎝ ⎠Cs (ω) = 0 . 

⎛ 5.98d ⎞ln⎜ ⎟ 
⎝ 0.8w + h ⎠ (28)  
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2.3.2.2. G: distributed shunt conductance 
 
The last remaining RLGC parameter is G, the distributed shunt conductance. It is calculated 
using the frequency-dependent loss tangent. The definition of the loss tangent is: 

ε" 
 δ (ω) = .

ε ' (29)  

The frequency-dependent shunt conductance per meter G is given by  [Gardiol], [Grivet], 
[Chipman], [Ramo]:   

 G(ω) = δωC . (30)  

In some older publications [Brianti], [vdPlaats], the loss tangent is incorrectly assumed to be a 
constant and as a result, the dielectric part of the transfer function is modeled as linearly 
dependent on frequency and considered to be non-dispersive. An inverse Fourier transform 
then (incorrectly) yields a symmetrical impulse response. A dielectric attenuation linearly 
dependent on ω is physically impossible. The Paley-Wiener criterion and Kramers-Kronig 
relations dictate that no causal network can provide an attenuation which (asymptotically) 
increases as a function of ω with a factor larger than or equal to one times ω [Guillemin],  
[Nahman]. 
 
To guarantee causality in the time domain, the real and imaginary parts of the complex  
dielectric permittivity function again need to form a Kramers-Kronig pair [Ramo]. This can  
also be understood from another point of view. The conservation of energy law also dictates a 
necessary relation between ε’ and ε”. The energy that is dissipated in the dielectric cannot be 
stored on its capacitance. When the real part of the dielectric permittivity decreases, less  
energy can be stored capacitively and the dielectric losses increase, indicated by an increase in 
the imaginary part of the dielectric constant [Hall]. 
 
To obtain a dielectric response that does comply with Kramers-Kronig, the response can be 
modeled as a sum of multiple single Debye responses, each with a different relaxation time 
[Svensson], or a continuous sum of an infinite number of Debye responses [Djordjević]. 
Although [Jonscher] notes that this distributed relaxation times approach “fails to address the 
evident existence of a universal fractional power-law behavior which represents very well the  
high-frequency dipolar behavior”, at present it does seem to be the most practical approach. In  
their papers, [Svensson] and [Djordjević] show their model to correspond well with 
measurements. 
 
The complex, frequency-dependent dielectric permittivity of FR4 is approximated as follows  
[Djordjević], as published in 2001:  

Δε ' ⎛ω2 + jω ⎞
 ε (ω) = ε '− jε"= ε ' ∞ + log ⎜ ⎟⎜ ⎟ , 

m2 − m 10 
1 ⎝ ω1 + jω ⎠ (31)  

where Δε’ is the total variation of  ε between the lower (ω m1
1=10 ) and upper model frequency 

(ω2=10m2), and ε’ ∞ is the dielectric constant at very high frequencies. This equation for ε  
obeys the Kramers-Kronig relations. 
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Although the above function is meant for modeling the complex dielectric permittivity in 
FR4, it was also found to be useful and accurate to model the dielectric in cables. We use 
Eq. 31 to calculate the frequency-dependent values for C and G. The optimum values for the 
parameters in Eq. 31 are determined experimentally, to fit with the measurements. 

2.3.3. Isolated magnitude transfer function for skin loss and dielectric loss 

It is important to be able to see in the frequency domain magnitude plot the separate 
contributions of skin-effect and dielectric-loss. We could, for example, determine which loss 
mechanism is dominant and at which ‘crossing frequency’ the dielectric loss starts to  
dominate over the skin-effect loss. 
 
Having found all the RLCG parameters, we can collect them together and substitute them into 
Eq. 3 for the propagation constant, which leads to: 

⎛ ⎛ λ ⎞⎞
 γ =		 ⎜λ ω + jω⎜ Le + ⎟⎟(δωC + jω⎜ ⎟ C) , 

⎝ ⎝ ω ⎠⎠ (32)  

where C is frequency-dependent through ε (using Eq. 31), and δ is also frequency-dependent. 
(See Eq. 29.) The above formula can be rewritten as 

⎛ (1− j)λ ⎞
 γ = jω L C⎜ ⎟

e 1+ (1− jδ ) .⎜ ⎟
⎝ L e ω ⎠		 (33)  

The loss contributions in the propagation constant can be separated by using a binomial series 
approximation. Using the binomial series for power 0.5, valid for small x: 

x 1 1 
 1+ x = 1+ − x 2 + x 3 + ... ,

2 8 16	 (34)  

we obtain [vdPlaats] 

⎛ (1− j)λ (1− j) 2 λ 2	 ⎞⎛ δ δ 2 ⎞
 γ = jω L C ⎜e 1+ − + ...⎟⎜ − ⎟ ⎟ .⎟⎜1 j + + ...⎜

⎝ 2L ω 8L2 
e eω ⎠⎝ 		 2 8 ⎠ (35) 

The series can be truncated after the x/2 term, because the further terms are negligible,  
resulting in [vdPlaats]: 

λ C λ C δωγ = jω LeC + j ω + ω + LeC  ,
2 Le 2 L 2

14444 244443 144e 44244443 
jβ α		 (36)  

where the accolades indicate the loss terms α and the phase terms β. 
 
(As an aside - because C is a (weak) function of ω, because it is calculated using Eq. 31, as 
stated above, we cannot simply state that the propagation delay is given by the first phase 
term in the above equation. In fact, that term  also captures the dispersion from the dielectric 
loss. This is not a problem here because we are only interested in the magnitude.)  
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We take the loss terms (the third and forth terms) because we are interested in the magnitude 
transfer function. The frequency domain magnitude transfer function is now written as: 

⎛ λ C δω ⎞

 
⎜ ω + LeC ⎟l

H ( ) = e 
⎜ ⎟

ω ⎝ 2 L e 2 ⎠ . (37)  

In this equation, we can see the separate contributions for the skin-effect loss and the 
dielectric loss. To see only the dielectric loss, we set the conductivity σ to infinity, so that λ=0.  
The dielectric loss contribution is then: 

⎛ δω ⎞ 

 ⎜ L C ⎟ l
H diel (ω) = e 

e 
⎝ 2 ⎠ 

. (38)  

To see only the skin-effect loss, we set the loss tangent δ to zero, resulting in:  

⎛ λ C ⎞

 
⎜ ω ⎟l

H
⎜ 2 L ⎟

ω e ⎠
skin ( ) = e ⎝ . (39)  

 

 

 

 

2.4. Time domain equations 

The impulse response can be obtained from the transfer function from Eq. 1 above by a 
(numerical) inverse Fourier transform. We use this in the measurement section. However, for 
quick time-domain simulations, it can also be useful to have an analytical formula for the 
impulse response. In this section, we deal with the impulse responses for the skin effect 
(subsection 2.4.1) and for the dielectric loss (subsection 2.4.2). 

2.4.1. Skin-effect impulse response 

Well known from the literature is the skin-effect step response a(t) [Gardiol], [Grivet],  
[Chipman], [Ramo]:   

 a(t) = erfc( τ 1 / t / 2) . (40)  

This function is illustrated in Fig. 3(a). By differentiating this equation we obtain the (causal)  
skin-effect impulse response h1(t) [vdPlaats]: 

τ τ 

 
− 1

h 1 e 4
1(t) = ⋅ t ,

2t πt (41)  

where the skin-effect time constant  τ1 is equal to:  

l 2λ2 

 τ = ,1 2Z 2
c (42)  

where Zc = Le / C  approximates, at high frequencies, the characteristic impedance.  
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Fig. 3. Skin effect step response and impulse response. (a) Step response. (b) Impulse 

response. 
 
 

 
 

Fig. 4. Example of the theoretical, isolated impulse for dielectric loss. 
 
 
 

Fig. 3(b) shows h1(t). The x-axis shows time divided by τ1. The y-axis shows h1(t)·τ1. The axis  
is chosen in this way to clearly show the maxima and time span of the function. It can be seen 
that h1(t) is asymmetrical over time with a very long tail. 
 
In fact, ‘time constant’ τ1 is not constant but is dependent on frequency through the frequency-
dependent electrical capacity C. We test the accuracy of this simplification later in this 
chapter, but for now we state that for channels that are dominated by skin-effect loss, such as  
high-quality cables, h1(t) as given above is an accurate approximation of the impulse  
response. 
 
In Chapter 4 we use this analytical skin-effect impulse response in time-domain simulations 
to analyze the PWM equalizer.  
 
As an interesting aside, in Appendix A it is shown that a characteristically terminated on-chip  
RC line has exactly the same response as a skin-effect-only channel. Both channels can be 
described by means of a diffusion equation. 
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Fig. 5. From top to bottom: RG-58CU, Aircom+, Aircell7, 10GBASE-CX4. 

2.4.2. Impulse response for dielectric loss 

Unlike the skin-effect impulse response, the analytic impulse response of a channel 
dominated by dielectric loss could not be found in the literature. For an intuitive insight into 
the behavior of these channels, it would be convenient to know which shape this impulse 
response has. To obtain the impulse response, we first set the skin loss to zero by setting the 
conductivity to infinity, which results in R=0 and Li=0. The propagation constant then 
becomes: 

 γ diel = ( jωLe )(G + jωC) , (43)  

and the accompanying dielectric-only transfer function is: 

 H −γ diell
diel ( jω) = e . (44)  

Taking the inverse Fourier transform of this equation yields the isolated dielectric impulse 
response. Like the skin-effect impulse response, it is also asymmetrical over time, with a long 
tail on the right side. The rise time is a bit longer and the function is less steep on the left side. 
See Fig. 4 for an illustration of an example. (In that figure, the propagation delay is subtracted 
from the time.) 

2.5. Match between model and measurements 

In this section, we compare the model with measurements of copper channels. Both time 
domain and frequency domain measurements are used. Measurements are made on four 
cables and a printed circuit board trace. First, in subsection 2.5.1, the measured channels are 
described. Next, in subsection 2.5.2, the measured transient responses to a random sequence 
of bits are given. Finally, in subsection 2.5.3, the measurements of the transfer functions S21  
and the step responses are discussed and we check how well the model results match the 
measurements. 
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 Fig. 6. 270cm (6x45cm) 50Ω FR4 microstrip trace with SMA connectors. 

2.5.1. Copper channel types 

We measure four copper cables and one printed circuit board. We use two types of copper 
cables in our measurements: coaxial and differential cables. A photo of the cables and 
connectors is shown in Fig. 5, and the PCB trace is shown in Fig. 6. The five channels are: 
(a) 25m RG-58CU (coaxial cable) 
(b) 130m Aircom+ (coaxial cable) 
(c) 80m Aircell7 (coaxial cable) 
(d) 15m 10GBASE-CX4 (24AWG shielded differential cable)  
(e) 270cm 50Ω FR4 PCB microstrip. 
 
Table 1 shows the channel parameters and the parameters of the model fit, described later in  
the measurement section of this chapter. Cable (a) is a low-cost, low-end, standard coaxial 
cable with polyethylene dielectric. Cable (b) is a more expensive coaxial cable with low-loss  
air dielectric, designed for frequencies up to 10GHz. However, it is rather rigid and has a  
large diameter. Cable (c) has a foam dielectric and an inner conductor of woven copper. 
Therefore it is much more flexible and thinner than (b), while still offering a low dielectric  
loss relative to cable (a). Finally cable (d) contains 8 shielded differential pairs and is  
designed for a bit rate of 3.125 Gb/s per pair using 2-tap SSF at the transmitter. A small  
adapter PCB makes one of the pairs available at an SMA connector. All coaxial cables and  
the PCB trace have a characteristic impedance of 50Ω and (d) has a differential characteristic 
impedance of 100Ω. Cable (d) was not available at lengths  of more than 15m. Channel (e) is a  
printed circuit board with the widely used FR4 type dielectric. We used a very long pcb trace 
of 270cm (106”) to be able to achieve a high channel loss at the Nyquist frequency. The trace 
is single-ended. It is a microstrip with a characteristic impedance of 50Ω. There are no vias,  
and at both ends there are SMA connectors. 
 
Reflections were reduced to a minimum by choosing channels with well controlled 
characteristic impedances and terminating them  with well matched resistors. 
 
Chapter 4 describes how these channels are used to determine the performance of the 
equalizer. For this purpose, we needed to use a number of channels that are different in terms 
of physical configuration and skin effect / dielectric loss ratios. The lengths of the coaxial 
cables are chosen such that the equalizer can be tested at the highest speed and maximum loss  
compensation that it can handle. The PWM equalizer can typically handle up to 30dB of loss  
at 5Gb/s, as is shown later. 
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Name (a) (b) (c) (d) (e) 
Type RG-58CU Aircom+ Aircell7 10GBASE- PCB 

CX4 microstrip 
Physical parameters 

Length  25m  130m  80m  15m  270cm 
Conduct. (σ) 5.8 107 5.8 107 5.8 107 5.8 107   5.8 107 

Cable outer 5.1mm   10.3mm  7.3mm  10mm n/a 
diameter (8 pairs) 

Radius inner  0.45mm  1.35mm  0.93mm n/a n/a 
conductor (a) (woven) (solid) (woven) 
Radius outer 1.48mm   3.6mm  2.5mm n/a n/a 
conductor (b) 
Diameter of n/a n/a n/a  0.51mm n/a 

cond. (d)  (24AWG) 
Dist. between n/a n/a n/a  0.8mm n/a 

cond. (D)  
  Width (w) n/a n/a n/a n/a  1.2mm

 Dielectric n/a n/a n/a n/a  0.8mm 
 distance (d) 

 Thickness (h)  n/a n/a n/a n/a  45um 
Dielectric Polyethylene Air  Foam  Foam FR4 

Measured parameters 
 Loss/10m 12.4dB 2.3dB 3.7dB 12.7dB 74.1dB 

@2.5GHz 
 Calculated from physical parameters 

λ  4.80 10-5 1.69 10-5 2.45 10-5 1.69 10-4   8.74 10-5 

 Le 2.37 10-7 1.96 10-7 1.99 10-7 4.09 10-7   3.13 10-7 

Model fit parameters 
 εr ’ ∞ 2.6 1.4 1.5 2.1 4.0 

Δεr ’ 81 10-3 4.5 10-3 7.9 10-3 21 10-3 1.5 
m1 1.7 1.5 3.8 3.3 1.1 
m2 14 14 14 14 14 
τ1  1.0ns 1.3ns 1.2ns 0.63ns 0.5ns 

Table 1. Channel parameters. 
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Fig. 7. Measured response of 25m RG58CU coaxial cable (a). 

 

 
Fig. 8. Measured response of 120m Aircom+ coaxial cable (b). 

2.5.2. Transient behavior 

To obtain a first impression of their transient behavior, the measured response of the four  
cables and the PCB to a 2PAM random sequence of bits is given. See Figs. 7-11 below. 
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 Fig. 9. Measured response of 80m Aircell7 coaxial cable (c). 

 
Fig. 10. Measured response of 15m  10GBASE-CX4 differential cable (d). 

 
Fig. 11. Measured response of 270cm FR4 pcb trace (e). 
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In all cases, heavy ISI can be seen in the measurements. The amplitude of the output is higher 
for the twisted pair and the PCB channels, because of their lower losses, as is confirmed later 
by the S21 measurements. Furthermore, a slightly higher ripple can be seen in the PCB 
measurements. This is due to the better shielding of the cables.  

2.5.3. Measurements – model match 

A comparison is made between the measurements and the model using the three-step  
methodology described below. 
 
(1) 	 A measurement of the S21 (magnitude of the transfer function) of the channel is made 

using a network analyzer. The magnitude of the theoretical RLGC transfer function is  
fitted to it by adjusting the model parameters. Measurements and model fit are plotted  
in a figure. Using the equations from subsection 2.3.3, the skin loss and dielectric loss  
are calculated separately and also plotted. 

(2) 	 The step response of the cables is measured using time domain transmissometry 
(TDT). The impulse response is obtained by differentiation and (low-pass) noise 
filtering. This impulse response is compared with two theoretical impulse responses.  
The first is the inverse Fourier transform of the RLGC transfer function, used in step 
(1) above, calculated numerically. The second is the simple analytical skin effect 
impulse response given in subsection 2.4.1. 

(3) 	 Finally, the measured impulse response is Fourier transformed to obtain the frequency 
domain magnitude transfer. This is again compared to the frequency domain  
measurements in step (1). 

 
2.5.3.1. S21 fit 
 
In Figs. 12-16, the measured and modeled magnitudes of the transfer function S21 for the 
cables are shown, as described in step (1). The modeled contribution of conductor losses and 
dielectric losses is shown separately, using the equations from subsection 2.3.3. The measured 
and Fourier transformed impulse responses, as described in step (3), are also shown in this 
figure. 
 
The legend for Figs. 12-16 is as follows: 
 
- ‘model’: 	  magnitude of Eq. 1, 
- ‘model (skin)’: 	 Eq. 39, 
- ‘model (diel)’: 	 Eq. 38, 
- ‘measured (NA)’: 	 measured using network analyzer, 
- ‘measured (FT ht)’: 	measured using TDT and then Fourier transformed (see also subsection  

2.5.3.2). 
 
See Table 1 for the parameters that were used to fit the model. The optimization algorithm  
that was used for the model parameter fitting is Particle Swarm Optimization (PSO)  
[Kennedy]. The model parameters εr’ ∞,  Δεr’ and  m1 for the dielectric loss were optimized to  
provide a model fit, while m2 was fixed at 14 and the skin loss was fixed using the well  
known copper conductivity σ=5.8 107 S/m. When parameter  εr’ ∞  is averaged over the whole 
frequency range, it comes very close to the commonly known values for the relative dielectric 
permittivity εr. These values are 2.25 for polyethylene in RG58CU, 1.4 for foam/air dielectric 
in Aircell7 and Aircom+, and 4.9 for FR4. 
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Fig. 12. Measured S21, Fourier transform of measured impulse response, and model fit for 

25m RG-58CU cable (a). 
 

The dielectric loss of the PCB trace is lower than expected. It was designed for 30dB loss at 
2.5GHz, using a loss tangent of 0.025. The measured loss is 21dB instead, so the dielectric 
loss is lower in this specific board. (In Chapter 4 the total channel loss is 25dB because a 
1.75m coaxial cable and a bias tee are also used for connecting to the chip.) 

Figs. 12-16 show the measurements and model fits in the frequency domain for 25m 
RG-58CU, 80m Aircell7, 130m Aircom+, 15m 10GBASE-CX4, and 270cm FR4 microstrip 
trace respectively. The measured network analyzer data and the modeled transfer function 
only differ significantly for RG-58CU above 2.5GHz. It is most likely that its BNC 
connectors cause impedance mismatches at those frequencies. 

The Fourier transformed time domain measurements – from step (3), shown in the figures as 
‘FT ht’ – differ slightly from the network analyzer data. A possible cause for this is that this 
result is calculated using the response to a non-ideal step, with finite steepness. For the PCB 
and the twisted pair (10GBASE-CX4), the difference is somewhat larger. It is most probably 
caused by the short pieces of coaxial cable needed to connect them to the TDT equipment. 
From the frequency domain measurements with the network analyzer, the effect of these short 
cables was removed by calibration, but from the TDT measurements it was not. However, in 
all cases the difference is not greater than 1-2 dB at 2.5GHz.  

Cable (b) has the highest ratio of skin loss to dielectric loss, because of its air dielectric. Cable 
(a) has the crossing point between skin loss and dielectric loss at the lowest frequency of the 
copper cables, at 2.2GHz. Losses from the printed circuit board trace (e) are clearly 
dominated by dielectric losses. 
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Fig. 13. Measured S21, Fourier transform of measured impulse response, and model fit for 

130m Aircom+ cable (b). 
 

 
Fig. 14. Measured S21, Fourier transform of measured impulse response, and model fit for 

80m Aircell7 cable (c). 
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Fig. 15. Measured S21, Fourier transform of measured impulse response, and model fit for 
15m 10GBASE-CX4 24AWG (d). (Measured: Sdd21.) 

Fig. 16. Measured S21, Fourier transform of measured impulse response, and model fit for 
270cm long microstrip on FR4 printed circuit board (e).   

39
 



 

 

 

 
 

2.5.3.2.  Impulse response fit 
 
For step (2) we show the time domain measurements and compare them to the models. A 
40ps-risetime, 200ps step was used to measure the step responses. The measured step 
response was then differentiated to obtain the impulse response. To remove the high-
frequency noise on this impulse response, a linear-phase equiripple low-pass FIR filter was  
used with a passband of 10GHz (0.01dB ripple), and 20dB attenuation in the stopband 
(starting at 15GHz). Figs. 17-21 show the results. 
 
The legend for Figs. 17-21 is as follows: 
 
- ‘measured’: 	  impulse response from differentiated, noise filtered, step response, 
- ‘model (total)’: 	 numerically calculated inverse Fourier transform of Eq. 1 (of which the 

magnitude was fitted to the measured S21 in step (1); includes both skin 
effect and dielectric loss.  

- ‘model (skin)’: 	 Theoretical impulse response for isolated skin effect (subsection 2.4.1),  
calculated using parameter τ1 in Table 1. 

 
While most of the modeled impulse responses fit well with those from  measurements, there is 
a small difference for both the 10GBASE-CX4 cable and the FR4 trace.  As explained in the 
previous subsection, a likely cause is that they needed to be connected to the measurement 
equipment using short coaxial wires (20cm long). The effect of these short cables was 
removed by calibration from  the network analyzer measurements, but not from the step 
response measurements. 

Fig. 17. Impulse response from measurements and model fit for 25m RG-58CU cable (a). 
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Fig. 18. Impulse response from measurements and model fit for 130m Aircom+ cable (b). 

Fig. 19. Impulse response from measurements and model fit for 80m Aircell7 cable (c). 
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Fig. 20. (Differential) impulse response from measurements and model fit for 
15m 10GBASE-CX4 24AWG (d). 

Fig. 21. Impulse response from measurements and model fit for 270cm long microstrip on 

FR4 printed circuit board (e).   
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2.6. Conclusions 

A practical model for copper channels is described, modeling both skin effect and dielectric 
loss. Special attention was given to causality, to provide an accurate impulse response for use 
in high speed transient simulations. 

The well known formulas for skin effect were combined with a new formula for dielectric 
loss in FR4, published only in 2001. This formula for dielectric loss is shown in this chapter 
to be not only useful and accurate for modeling the dielectric loss on printed circuit boards, 
but also for modeling cables. Both the complex skin-effect impedance and the complex 
dielectric impedance comply with the Kramers-Kronig relations. Therefore, an inverse 
Fourier transform of the transfer function yields a causal time domain response. 

Measurements show a good model fit in the time domain with coaxial copper cables, a twisted 
pair cable, and a printed circuit board trace. We can conveniently use the modeled impulse 
response for accurate transient simulations of high-speed communication systems.  
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