
 
 
5.1. Introduction 

Chapter 5 
 
Multitap PWM pre-emphasis 
 

 
In Chapter 4, it was shown that the simple PWM pre-emphasis filter fits very well to cables  
and PCBs, and can provide up to 30dB of loss compensation. An interesting question is 
whether the pulse-width filtering technique can be extended to equalize channels with a more 
complex transfer function. As is well known, with a FIR filter, this is done by increasing the 
number of taps. Using multitap FIR pre-emphasis, more poles and zeros can be added to the  
filter transfer function. We can then for example make band pass filters, increase the filter 
order, and cancel reflections, e.g. on backplane PCBs [Stonick]. 
 
The question that we address in this chapter is: would the same be possible for the PWM  
filter? The goal is to make a transmitter that, unlike a FIR pre-emphasis filter, still switches  
between only two discrete output voltages, while still offering the degrees of freedom of a 
multitap FIR filter. This would enable a switching transmitter architecture, with possible  
advantages in the light of CMOS scaling. 
 
The key question now becomes: can we find a useful function to calculate the pulse-widths? 
These should be a function of multiple bits, as in the FIR filter, where the amplitudes are a 
function of multiple bits. If we are able to do so, which extra degrees of freedom do we gain? 
Are these extra degrees of freedom orthogonal? In this chapter, we explore the functionality 
that these multitap PWM filters can offer and we analyze their power spectral density (PSD) 
functions. 
 
The remainder of this chapter is divided into four sections as follows. Section 5.2 starts by 
introducing the principle of the multitap PWM filter. We first convert the output of a multitap  
symbol-spaced FIR (SSF) filter into a PWM output by using the ‘same-area approach’. We  
show with transient simulations that, for an example channel, using such a multitap PWM 
transmit filter results in nearly identical eye diagrams at the receive side as for a multitap SSF  
transmit filter. Next, Section 5.3 introduces a method to calculate the autocorrelation function 
and the PSD of such a multitap PWM filter. Next, in section 5.4, an optimization of the PWM 
function is made that lowers the number of transitions per second, decreasing the width of the 
PSD. Finally, conclusions are drawn in section 5.5. 
 
Throughout the sections, the example of a three-tap PWM filter is used. However, the 
calculation methods can be extended to more than three taps. 
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(a) (b) (c) 

Fig 1. Replacing PAM pulses with PWM pulses. a) PAM and PWM input pulses. The PAM 
pulses have amplitudes of 0.33V, 0.66V and 1V. The PWM pulses have pulse-widths of 33%, 
66% and 100%. Ts=200ps. b) Response of low-bandwidth example channel. c) Response of 

high-bandwidth example channel.  

 

 

 

 

 

 
 

 
 

 

 
 

5.2. Principle of the multitap PWM filter 

In this section, we develop the concept of a multitap PWM pre-emphasis filter. As a start, in 
subsection 5.2.1, we try to convert the output of a multitap SSF filter into a PWM output by 
making sure that the area under the transmitted waveforms is equal. This is first done using a 
PWM pre-emphasis transmitter with three output voltage levels (-1V, 0V and 1V). The 
second step (in subsection 5.2.2) is a PWM filter with two output voltage levels (-1V and 1V), 
which would be more straightforward to implement. Transient simulations and eye diagrams 
are shown to demonstrate the feasibility of the multitap PWM filter. This section follows an 
intuitive approach; mathematical models are developed later in this chapter. 

5.2.1. Same-area approach to translate FIR filter to PWM filter 

A first step can be taken as follows. The basic idea for the multitap PWM filter is that the 
pulse-width is a function of multiple bits, in the same way that the amplitude of a SSF filter is 
also a function of multiple bits. The question then arises: what is the correct function for this 
pulse width as a function of multiple bits? We replace the pulse amplitude modulated signal 
coming out of a SSF filter (which has variable amplitude and a fixed switching interval), with 
a pulse width modulated (PWM) signal that has a fixed amplitude and a variable switching 
interval. Our key assumption in making the translation is that if the area under both is the 
same, in terms of (absolute) voltage integrated over time, the channel response will also be the 
same. This is a general assumption behind many well-known PWM schemes [Nielsen]. 

100
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Theoretical channel used for time domain simulations. (a) Channel loss. (b) pulse 
response (Ts=200ps). 

This idea is shown in Fig. 1. The responses of a low-pass channel to a single PWM pulse and 
to a single SSF pulse are shown. This is done for two channels: one with a low bandwidth 
relative to the bit rate, and the other with a high bandwidth relative to the bit rate. We can see 
that for the first situation, where we need an equalizer, the channel response is indeed almost 
the same. For the situation with a fast channel, the response to the PWM signal is different 
from that to the PAM signal. However, equalization is not needed for a channel that is fast 
enough when compared to the bit rate. 

It appears that the area under the pulse, whether it is a PWM or PAM pulse, does indeed 
determine the response of a ‘slow’ enough low-pass channel. The channel is sufficiently slow 
that it ‘sees’ each of the pulses as an impulse. 

We now work with this same-area idea to make a multitap PWM filter that outputs the same 
area as a multitap SSF filter. To do this we first look at the SSF filter to determine which 
amplitude values it produces at its output as a function of the input bit stream. Next we 
replace these in the above fashion with PWM pulses and see whether the channel response is 
the same. The mathematics are dealt with in a later section; for now we look at the transient 
simulations to obtain an intuitive understanding. 

A theoretical channel was used to perform the time domain simulations. The loss of the 
channel is monotonously increasing and is approximately 30dB at the Nyquist frequency of 
2.5GHz. This theoretical channel is designed to have more pre-cursor ISI than e.g. 25m 
RG-58CU so that a three-tap filter is necessary (one pre-cursor tap is added to the two-tap 
FIR). The channel loss is shown in Fig. 2(a), and the response to a 200ps pulse is shown in 
Fig. 2b. 

We now look at the transient simulations. First, in Fig. 3(a), the output of a 3-tap symbol-
spaced FIR (SSF) filter is shown. In the same figure, the channel response to it is shown. Note 
that there are 23=8 possible amplitude levels at the filter output. The bit rate is 5Gb/s, which 
gives a symbol length (and bit length, assuming 2PAM) of Ts=200ps. The tap settings used 
for this specific example are w={-0.15, 0.55, -0.29}. (These tap settings are optimized for the 
example channel.) 
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 (a) 

(b) 
Fig. 3. Simulated response of  	example low-pass channel to 3-tap SSF and 3-tap PWM filter, 

and transmitter outputs (=channel inputs). (a) 3-tap SSF. (b) 3-tap, 3-voltage-level PWM. 
 

 

 

 

 

 

 
 

It is now explained how the PWM filter output in Fig. 3(b) was made. To translate the 
amplitude modulated signal output of the SSF filter into a pulse-width modulated signal, and 
to be able to calculate the autocorrelation later, we first chop the signal up into ‘singlets’. A 
precise mathematical definition of a singlet is given later. For now it is sufficient to know that 
the duration of a singlet is equal to the symbol duration Ts (=200ps in our example), and that 
the edges between singlets are at those points in time where the SSF signal is allowed to 
change in amplitude. For example, looking at Fig. 3(a), we can see that there are five singlets 
between 25ns and 26ns. The same goes for Fig. 3(b), except that those singlets have a 
different shape. The amplitude of the SSF output is fixed during one singlet (Fig. 3(a)) 
because it is a symbol-spaced filter. The pulse-width of the PWM filter is fixed during one 
singlet (Fig. 3(b)) because it is also a symbol-spaced filter. Note that there are 23=8 possible 
singlets at the filter output of the 3-tap PWM filter. 

To calculate the singlets for the PWM filter, we convert each SSF singlet into a PWM singlet 
with an equal area, as was conceptually shown in Fig. 1. We make sure that the area under the 
PWM ‘spikes’ is the same as under the ‘flat tops’ of the SSF filter. The polarity of the SSF 
singlet is preserved by letting the PWM pulse go to either 1V or -1V, depending on the 
polarity of the SSF singlet. This PWM filter transmits three output levels (-1V, 0V and 1V), 
and therefore we call it 3PWM. 
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                                                                    (a) (b) 

Fig. 4. Eye diagrams of response of example channel to 3-tap SSF input and to 3-tap PWM 
input, Ts=200ps. (a) 3-tap SSF. (b) 3-tap, 3-voltage-level PWM. 

 

 

 

 

 
 
 

 
 

 
 

 
 

As hoped, the channel response is almost the same as that to the 3-tap SSF signal, even 
though the transmitter output has quite a different shape. The eye diagrams in Fig. 4 confirm 
this. The eye diagram for the 3PWM filter looks practically the same as that for 3-tap SSF. 

In conclusion, we have seen that we can obtain a transient cable response nearly identical to 
that of a SSF filter by replacing the PAM singlets with PWM singlets, using the same-area 
approach. The channel is successfully equalized. A prerequisite is that the channel has a low-
pass characteristic. 

5.2.2. 2-level, 3-tap PWM 

It might not be so straightforward to implement the 3-voltage-level PWM scheme presented 
above in a transmitter. For example, in a voltage mode implementation it would require 3 
power supply rails. Therefore, it would be more convenient to have two instead of three 
allowed levels at the output of our PWM transmitter. This might make it easier to implement 
the circuit with a switching transmitter. Below we show how the number of output levels can 
be reduced to two without degrading the performance of the multitap PWM equalizer. 

During one singlet, we now let the signal first go negative, then positive, and then negative 
again. We now need another translation from pulse amplitude to pulse-width that gives us two 
instead of three output levels. To find this new translation we can again use the same-area 
principle: the total area (positive and negative parts) should be equal to the area of the SSF 
singlet. We can perform these calculations and provide a new 2-voltage-level scheme. We use 
the term ‘2PWM’ because it outputs two voltage levels: -1V and +1V. In the next section we 
present these calculations. Here we first show the results of the transient simulations. 

The simulated transient response of the example channel to the 2PWM scheme is given in 
Fig. 5(b). For comparison, the channel response to the 3PWM scheme is repeated in Fig. 5(a). 
Both the 2PWM and 3PWM schemes are 3-tap filters; they only differ in the number of 
output levels. The eye diagrams are compared in Fig 6. As can be seen, the channel responses 
are almost identical. 
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                                                                   (a) (b) 

Fig. 6. Eye diagrams of response of example channel to 3PWM input and to 2PWM input, 

Ts=200ps. (a) 3-tap, 3-level PWM (3PWM) (b) 3-tap, 2-level PWM (2PWM) 


 

 

 (a) 

(b) 
Fig. 5. Simulated transient response of example channel to 3PWM and to 2PWM, and 

transmitter outputs (=channel inputs), Ts=200ps. Both PWM filters have three taps. (a) 3-level 
PWM (3PWM). (b) 2-level PWM (2PWM). 

  

 
 We can conclude that the 3-tap SSF, the 3-tap 3-level PWM (3PWM), and 3-tap 2-level PWM 

(2PWM) schemes all result in almost the same output eye diagram, even though the TX 
shapes are vastly different. As shown in the time domain simulations, the channel responds in 
the same way to both the PWM and the SSF pre-emphasis filters due to the channel’s low-
pass behavior. 
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Furthermore, we conclude that it was straightforward to find the duty-cycles because they 
were derived from the singlet heights of the SSF filter using a ‘same-area’ approach. 

5.3. Power spectral density (PSD) functions of the multitap PWM filters  

Now that we have established an intuitive time-domain understanding of the multitap PWM 
filters, we analyze the filter from a frequency-domain point of view. The power spectral 
density (PSD) functions of the PWM filters are calculated and compared to the PSD of the 
3-tap SSF filter. 

We can obtain the power spectral density (PSD) in the following way: 

1) Calculate the autocorrelation Rxx(τ) (subsection 5.3.1). 

2) Take the Fourier transform F{} of the autocorrelation to calculate the PSD (subsection
 

5.3.2): 

PSD = F{Rxx (τ )}. (1) 

5.3.1. Autocorrelation method 

In this subsection, we calculate the autocorrelations of the 3-tap PWM filters. We use the  
method first to calculate the autocorrelation of the well-known 3-tap SSF filter. This might  
seem cumbersome, because for the FIR filter we could more easily use (for example) a 
z-transform, but in this way the result (and the correctness of the method) can be checked 
against the known PSD function of the 3-tap SSF filter. For calculating the autocorrelation of 
the PWM filters, we cannot use methods commonly used for FIR filters, because of the time-
varying nature of the PWM filter. Therefore we need to devise a calculation method that 
accepts pulse-width modulated signals. This method uses the ‘singlets’, as described above. It 
can be extended to more filter taps. As an additional check, we compare the calculated  
autocorrelations with statistical simulations. 
 
This subsection is divided as follows. First, in 5.3.1.1, we explain how to calculate the 
singlets needed for our method, and as an example we calculate the singlet shapes for the 
3-tap SSF filter. Next, in 5.3.1.2, it is explained how to calculate the autocorrelation from 
these singlets. In 5.3.1.3, we calculate the singlet shapes for the 3PWM and 2PWM schemes. 
Finally, in 5.3.1.4, we use the method to calculate the autocorrelations of 3PWM, 2PWM, 
2-tap SSF and polar NRZ. 
 
5.3.1.1. From bits to singlets 
 
As explained above, we cut the transmitted transient data signal for which the autocorrelation 
is to be calculated into singlets y(t), each of length Ts (=symbol duration and bit duration, 
because 2PAM is used). The singlets y(t)  are defined as follows. They have a width of Ts, are  
zero outside of the interval (0,Ts) and inside that interval  they are a function of time t: 

⎧ 0, t < 0,
⎪ y(t) = ⎨ f (t), 0 < t < Ts ,  
⎪
⎩ 0, t > Ts . (2) 
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Singlet name Singlet number  Bit sequence bn-1...bn+1 
A y1(t) -1 1 -1 
B  y2(t) -1 1 1 
C  y3(t)  1 1 -1 
D  y4(t)  1 1 1 
-A  y5(t)  1 -1 1 
-B  y6(t)  1 -1 -1 
-C  y7(t) -1 -1 1 
-D  y8(t) -1 -1 -1 

Table 1. Singlets and represented bit sequences. 
 

 

 

 

 

 

 
 

  

 

 

  

In a 3-tap filter, the singlet shape is a function of three bits. At the output of a 3-tap SSF filter, 
there are 8 possible singlets, with 8 different voltage amplitudes (23=8 combinations), as a 
function of the three-bit sequence bn-1...bn+1, where n is the bit index from the interval (-∞,∞). 
The same applies to the 3-tap PWM filter: there are 8 allowed pulse-widths at the filter output 
(or 4 pulse-widths and 2 polarities). In the case of the SSF filter, each singlet has a specific 
height (and fixed width of 1 bit time) and in the case of PWM each singlet has a specific 
width and polarity (and a fixed amplitude of 1V). The advantage of this method is that the 
actual singlet shape f(t) does not matter. It can be either a SSF or PWM singlet – or anything 
else. 

We start with four of the eight singlets A, B, C and D and we can then make the other four by 
flipping them over the t-axis to obtain –A, -B, -C and –D. This symmetry eases the 
calculation of the autocorrelation. (There are other, non-symmetrical configurations possible 
but these lead to more complex autocorrelation calculations while not offering a clear 
benefit.) 

In Table 1, the assignment of singlet names to bit sequences is shown. For example, if the bit 
sequence bn to be transmitted is equal to {...,-1,1,-1,1,1,...}, then the singlet output of the 3-tap 
filter would be {...,A,-A,B,...}, where A-D stand for the singlets in Table 1. 

To give an example, and for later use, we now calculate the exact shape of the singlets for a 3­
tap SSF filter. The mathematical description of the singlets for the 3-tap SSF filter is:  

⎧0, t < 0,
⎪ySSF (t) = ⎨α , 0 < t < Ts , 
⎪
⎩0, t > Ts , (3) 

where the singlet amplitude α is given by: 

α = w1 ⋅ bn+1 + w2 ⋅ bn + w3 ⋅ bn−1 , (4) 

where w represents the tap weight values. 

The calculated singlet shapes for a 3-tap SSF filter are illustrated in Fig. 7 below, for tap 
settings  w={-0.15, 0.55, -0.29}. The amplitude is normalized to +/-1V to allow a same­
voltage-headroom comparison to the PWM filter. 
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Fig. 7. All possible singlets for a three tap SSF filter, as a function of the 3-bit sequence. In 

the middle of each singlet, α is printed. 
 
5.3.1.2. Autocorrelation from singlets 
 
As is well known, the formula for calculating the autocorrelation of a signal x(t) as a function  
of time shift τ is [Couch]: 

1 T 

 Rxx (τ ) = lim x(t)x(t +τ )dt . 
T →∞ 2T ∫ −T (5) 

We assume  that the signal is ergodic; its time-average is equal to its ensemble average. The 
autocorrelation for our 3-tap symbol-spaced filter has a total width of 6Ts; it is zero outside of  
the interval for τ of (-3Ts,3Ts). This is because the singlets have a width of Ts and the filter is a 
3-tap symbol-spaced filter. 
 
Using the singlet shapes A-D together with the probabilities of their occurrence, we can 
calculate the autocorrelation for the filtered data stream. Because the singlets are a function of 
three bits (and each singlet is only one bit wide) not all combinations of singlets are allowed  
to follow each other. For example, the singlet corresponding to bit sequence {-1,1,-1} (‘A’) 
can only be followed by a singlet corresponding to {1,-1,*}, where * denotes either +1 or -1 
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Fig. 8. Autocorrelation components R0(τ), R1(τ) and R2(τ) for the 3-tap SSF filter. 

(‘-A’ or ‘-B’); e.g. ‘D’ (corresponding to {1,1,1}) is not possible. To understand this, shift the 
first bit sequence one bit to the left. 

To obtain the autocorrelation, we need to check all the possible combinations and their 
probability of occurrence. Then, to calculate the autocorrelation using the singlets, we split 
the autocorrelation function into five (partially overlapping) parts: 
-the first part (R2(τ+2Ts)) around a time shift of -2Ts 
-the second part (R1(τ+Ts)) around a time shift of -Ts 
-the third part (R0(τ)) around a zero time shift 
-the fourth part (R1(-τ-Ts)) around a time shift of Ts 
-and the fifth part (R2(-τ-2Ts)) around a time shift of 2Ts. 

Each of the five parts has a width of 2Ts because the width of each singlet is Ts. The five parts 
are illustrated in Fig. 8 for the 3-tap SSF filter. 

The autocorrelation Rxx(τ) is symmetrical around τ=0, and is composed of the three 
components R0(τ), R1(τ) and R2(τ) as follows:  

Rxx (τ ) = R2 (τ + 2Ts ) + R1(τ + Ts ) + R0 (τ ) + R1(−τ − Ts ) + R2 (−τ − 2Ts ) . (6) 

The components R0(τ), R1(τ) and R2(τ) are defined as follows. First, R0(τ) is defined as: 

s1 8 ⎛ 1 T ⎞ 
R (τ ) = ∑⎜

⎜ ∫ y (t)yi (t −τ )dt ⎟
⎟ ,0 i8 i=1 ⎝ Ts 0 ⎠ (7) 

where yx(t) are the singlets as defined in Table 1. 
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Next, R1(τ) is defined as: 

1 T8 ⎛ 2 ⎛ 1 s ⎞⎞ 
 R (τ ) = ∑ ∑  ⎜ ⎜ ∫ t −τ )dt ⎟⎟

1 y i (t)y v (i , j ) ( ,
16 1 ⎟⎟i= ⎜ ⎜

1 ⎝ j=1 ⎝ Ts 0 ⎠⎠ (8) 

where yv1(i,j) is the jth allowed singlet to follow singlet yi. Appendix C lists the values for yv1(i,j). 
The values for j are chosen from the interval [1,2] because, as explained above, for each of the  
eight (i=1..8) singlets, only two singlets are allowed to follow it. This is because the bit 
sequence is shifted to the left  by one bit. There are 8·2=16 allowable combinations in total. 
 
Finally, R2(τ) is defined as: 

1 8 ⎛ 4 ⎛ 1 Ts ⎞⎞
 R (τ ) = ∑ ∑  ⎜ ⎜ y (t)y (t −τ )dt ⎟⎟

2 32 ⎜ ⎜ i v (i , j ) ,⎟
=

⎟i 1 ⎝ 
2

j=1 T ∫ 
⎝ s 0 ⎠⎠ (9) 

where yv2(i,j) is the jth allowed singlet to follow singlet yi, 2Ts after the start of this first singlet.  
Appendix C lists the values for yv2(i,j). The values for j are chosen from the interval [1,4] 
because the bit sequence is shifted to the left by two bits, so that for each of the eight (i=1..8) 
singlets there are now four singlets that are allowed to follow it, 2Ts after its start. There are 
8·4=32 allowable combinations in total. 
 
The above equations for R0(τ), R1(τ) and R2(τ) can be generalized into one equation for Rk(τ): 

1 8 ⎛ T

∑ ∑
2k ⎛ ⎞ 

k ) = ⎜ 1 
k ∫ 

s ⎞
 R (τ ⎜ y i (t)y vk (i, j ) (t −τ )dt ⎟⎟ .

8 ⋅ 2 ⎜ ⎟
= ⎜ ⎟i 1 ⎝ j=1 ⎝ Ts 0 ⎠⎠ (10)  

In Appendix C, the complete calculation is given. The results are reproduced here. The 
components R0(τ), R1(τ) and R2(τ) are given by, respectively:  

1  R0 (τ ) = (R
4 AA + RBB + RCC + RDD ) ,

(11)  

1  R1(τ ) = (− RAA − RAB + RBC + RBD − RCA − RCB + R
8 DC + RDD ),

(12)  

and 

1R2 (τ ) = (R + R − R − R − R − R + R + R
 16 AA AB AC AD BA BB BC BD  

+ RCA + RCB − RCC − RCD − RDA − RDB + RDC + RDD ). (13)  

In the above equations, a shorthand notation is used, e.g. RAB means: 

Ts

 R AB = ∫ y 1(t)y 2 (t +τ )dt ,
0 (14)  

where y1(t) is the singlet ‘A’ and y2(t) is the singlet ‘B’ (see Table 1). 
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5.3.1.3. Calculation of singlets for the PWM filters 
 
Now, a mathematical description is given of the singlets A,B,C and D for the 3PWM and 
2PWM schemes.  
 
Singlets for 3PWM 
 
The mathematical description of the 3PWM singlets is 

⎧ 0, t < (1− α )T
⎪

s / 2, 
 y3PWM (t) = ⎨sign( )α , (1− α )Ts / 2 < t < (1+ α )Ts / 2,  

⎪ 0, t > (1 + α⎩ )Ts / 2. (15)  

We can use the same variable α as for the 3-tap SSF filter, but now it denotes the pulse width  
and pulse polarity instead of the pulse height. It falls into the interval of [-1,1], because of the 
normalization that was done. As previously stated, the parameter α contains information about 
the pulse-width and its polarity. The absolute value of  α, which is a number from the interval 
[0,1], corresponds to the pulse-width (0-100%) and the sign of α corresponds to the pulse 
polarity. 

 
Fig. 9. All possible output singlet shapes for 3-tap 3-voltage-level PWM pre-emphasis 

(3PWM). α is printed in the middle of each singlet. 
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In Fig. 9, the singlets for 3PWM are shown. It can easily be proven that the areas under the 
3PWM and SSF singlets (see Fig. 7) are equal. 
 
Singlets for 2PWM 
 
As mentioned earlier, we would like to reduce the number of output levels of our PWM  
transmitter to two levels (1V and -1V) instead of three. The total area is now a sum of the  
positive and negative parts, as described above. To keep the area equal to the SSF area, the 
pulse-width needs to be different from that of the 3PWM scheme. Again, we use a single 
variable to denote both the pulse-width and its polarity. The absolute value of this parameter 
ψ is the pulse-width and its sign is the pulse polarity. This scheme is termed 2PWM because it 
has two output voltage levels. 
 
The definition of the 2PWM singlets is as follows: 

⎧ 0, t < 0, 
⎪− sign( )  ψ , 0 < t < )Ts / 2⎪ (1− ψ , 
⎪ y2PWM (t) = ⎨ sign( )ψ , (1− ψ )Ts / 2 < t < (1+ ψ )T  

( )ψ , (
s / 2, 

⎪− sign 1+ ψ )T / 2 < t < T ,
⎪
	 s s 

⎪ ⎩ 0, t > T s , (16) 


where sign(ψ)=sign(α), per definition, and ψ is chosen from the intervals [-1,-0.5] and [0.5,1].  
Values in the interval (-0.5,0.5) are not allowable. Using these intervals, we can achieve an  
equal summed area as that in the 3PWM scheme, as is shown below. 
 
The total area under the new pulse is equal to: 

∞ ⎛ (1−ψ s )T s / 2 (1+ψ )Ts / 2 Ts ⎞ 
 A ∫ ( )⎜n1 = yn1(t)dt = sign ψ − ∫1 dt + ∫1 dt − ∫1 dt ⎟ = (2ψ − sign( )ψ )Ts .⎜ ⎟

−∞ ⎝ 0 (1−ψ )T s / 2 (1+ψ )Ts / 2 ⎠ (17) 

We calculate how to translate from  α to ψ, using the same-area approach: 

 An1 = A3PWM , (18)  

 (2ψ − sign(ψ ))Ts = αTs , (19)  

 ψ = (α +1)/ 2 , (20)  

(and sign(ψ)=sign(α), per definition, as said above). Note how the interval for α of [-1,1] 
indeed leads to an interval for ψ of [-1,-0.5] and [0.5,1]. As soon as α<0, the 2PWM pulse is 
flipped around the t-axis, because of its sign definition, maintaining the symmetry between 
A,B,C,D and -A,-B,-C,-D singlets. The resulting singlet shapes are shown in Fig. 10. 
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Fig. 10. All possible output singlet shapes for 3-tap, 2-voltage-level PWM pre-emphasis 
(2PWM). ψ is printed in the middle of each singlet. 

The translation is ambiguous at only one point, which is at α=0 (where α has no sign). At this 
point, there are two possible singlet shapes for the 2PWM scheme, each with a 50% duty-
cycle. The first is negative, positive, and then negative (ψ=0.5), and the second is exactly the 
opposite: first positive, then negative, then positive (ψ=-0.5). We define here that in that case  
(which is rare), the sign of ψ be equal to the sign of the most significant filter tap (the tap with  
the maximum absolute value). 
 
5.3.1.4. Autocorrelation results 
 
Knowing the description of all the singlet shapes, we can fill them into the previously given 
autocorrelation formula and calculate the autocorrelations. The method is used to calculate the 
autocorrelations for the 2PWM and 3PWM schemes. For comparison, also the autocorrelation  
for the 3-tap SSF filter output and for polar NRZ (2PAM, unequalized) is calculated. 
 
To check the analytical calculations, we also compare the calculated autocorrelations to the 
results from a statistical simulation with 10,000 random symbols. 
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Fig. 11. Autocorrelations (from analytical and from statistical simulations). In some plots only 
the ‘analytical’ line can be seen because the ‘statistical’ line is right below it. (a) 2PWM (2­

level, 3-tap). (b) 3PWM (3-level, 3-tap). (c) 3-tap SSF. (d) Polar NRZ. 

The results are shown in Fig. 11. The individual plots show the following autocorrelations: 

a) 2PWM filter,
 
b) 3PWM filter,
 
c) 3-tap SSF filter, 

d) polar NRZ. 


The signals are normalized to a +/-1V supply voltage headroom. We see that 3PWM has an 

autocorrelation that very closely matches that of 3-tap SSF. The 2PWM autocorrelation shows 

more high-frequency components, due to the higher switching frequency. 


5.3.2. PSD functions 

In this subsection we describe the calculation of the PSD functions for the multitap PWM 
filters. We now have all the information to do this, using the autocorrelations calculated above.  

As described above, we use the Fourier transform to obtain the PSDs from the 
autocorrelations. To check the analytical calculations, we again compare the calculated PSDs 
to the results from a statistical simulation with 10,000 random symbols. 
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Fig 12 shows the PSDs for the following schemes: 
(a) 2PWM  filter  
(b) 3PWM  filter  
(c) 3-tap SSF filter 
(d) polar NRZ (2PAM, unequalized). 
 
A smoothing filter was used on the statistically calculated PSDs. Small differences between 
the statistical simulations and the analytically calculated results are due to the statistical nature  
of the simulations: a non-infinite number of symbols need to be used to limit the simulation 
time. 
 
The baseband part of the PSD (up to the Nyquist frequency fN, which is at 0.5 on the x-axis) is 
very similar to that of the SSF filter. As expected, the 2PWM scheme has a higher power 
spectral density at frequencies above the baseband than the 3PWM scheme, due to its higher 
switching frequency. This is a well-known side effect of PWM. As long as the channel has a 
low-pass transfer function, the high-frequency part of the spectrum will be filtered out by the  
channel. Also a low-pass filter inside the transmitter could be used to filter out those  
components. A system designer should weigh up this side-effect of PWM against the 
advantage (for high-speed low-voltage CMOS technologies) of using a transmission equalizer 
that only needs to switch between two voltages.  

Fig. 12. PSDs (from analytical and from statistical simulations). Smooth lines are for 
‘analytical’, jagged lines are for ‘statistical’. (a) 2PWM (2 level, 3 tap). (b) 3PWM (3 level, 

3 tap). (c) 3-tap SSF. (d) Polar NRZ. 
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5.4. Reducing the number of transitions in the 2PWM scheme  

A possible disadvantage of the 2PWM scheme, presented in the previous sections, is its large 
number of transitions – and the resulting large width of the PSD. The output voltage switches 
twice in each singlet. There might be unnecessary transitions in the scheme, adding power in 
higher frequencies that are outside of the signal band. We want to see whether the amount of 
transitions can be decreased by moving to another scheme. In this final section, we decrease 
the number of transitions per second of the PWM multitap filter by adjusting the 2PWM 
scheme that was presented above. The goal is to keep the eye opening the same, while making 
the PSD narrower. 

We still have an extra degree of freedom with the 2PWM scheme. This degree of freedom is 
the placing of the pulse in the singlet: whether the pulse is placed in the middle of the bit time, 
or at the left or right side. Up until now, our PWM scheme placed the pulse in the middle. 
However, looking back at the 1-tap PWM pulse shape from Chapter 4, we see that this pulse 
first has a positive voltage, and then a negative voltage. So it is placed on the left side (which 
is the best for a channel having predominantly post-cursor ISI). There is only one transition 
inside the singlet instead of two in the 3PWM and 2PWM schemes. To reduce the number of 
transitions, we can change our 2PWM scheme. We choose to move the pulse to the left of the 
singlet. This new scheme is illustrated in Fig. 13, dubbed the 2PWM-L scheme (‘L’ from 
‘left’). 

Fig. 13. Singlet shapes for 2PWM-L scheme. 
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The 2PWM-L singlet is defined as follows:  

⎧ 0, t < 0, 
⎪ ⎪ sign( )ψ , t < ψ T

 s , y2PWM −L (t) = ⎨ − ( )  
sign ψ , t > ψ ⎪
	 Ts ,

⎪ ⎩ 0, t > T s , (21) 
	

where, at first, the same parameter values for ψ (denoting pulse-width and polarity) as in the 
2PWM scheme are used. 
 
Judging by the transient simulation and eye diagram in Fig. 14, we can easily see that the 
2PWM-L scheme does not fit well to the channel. (The same channel is used as in the 
simulations with the previously discussed schemes.) Shifting the pulses to the left side of the 
singlets has changed the behavior of the filter in such a way that it is no longer enough to 
derive the pulse width simply from the SSF singlet height. The phase relations between the 
singlets are changed compared to  the previous schemes, because the length of time that they  
are moved to the left depends on their width. We need to compensate for this by using  
different pulse-widths. 
 
 

 

 

 

 

(a) 

(b) 
Fig. 14. Response of example channel to 2PWM-L scheme, Ts=200ps. (a) Time domain. 

(b) Eye diagram. 
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After some trial-and-error simulation runs, it was discovered that swapping singlets B&C 
(and –B&-C) provided a solution to the problem. This is equivalent to calculating the singlet 
pulse-widths from the SSF filter taps with taps 1 and 3 swapped. This new scheme 
incorporating the swap, is denoted as 2PWM-LBC. Mathematically, we define this scheme as 
follows. In Eq. 21, ψ is replaced by ψalt, where ψalt is given by: 

= (αaltψ alt +1)/ 2 , (22) 

and αalt is given by (compare Eq. 4): 

α = w ⋅ b + w ⋅ b + w ⋅ b ,alt 1 n−1 2 n 3 n+1 (23) 

where b is the bit sequence, and w represents the tap weight values. This scheme is illustrated 
in Fig. 15. 

In Fig. 16(b) the simulated time domain response of the channel to the 2PWM-LBC scheme is 
shown. For comparison, the response to the 2PWM scheme is repeated in Fig 16(a). Indeed, 
an open eye is seen and the number of transitions is lower (at 43) compared to the 2PWM 
scheme (at 51), just as we desired. Fig 17 compares the eye diagrams. The goal of keeping the 
eye opening the same is achieved. 

Fig. 15. Singlet shapes for the 2PWM-LBC scheme. 
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 (a) 

(b) 

Fig. 16. Simulated transient response of example channel to 2PWM and to 2PWM-LBC, and 
transmitter outputs (=channel inputs), Ts=200ps. Both PWM filters have three taps and two 

output voltage levels. (a) 2PWM (51 transitions). (b) 2PWM-LBC (43 transitions). 
 

 
                                                                   

 

 

(a) (b) 

Fig. 17. Eye diagrams of response of example channel to 2PWM input and to 2PWM-LBC 
input, Ts=200ps. (a) 2PWM. (b) 2PWM-LBC. 
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Next, we would like to know whether the PSD of the 2PWM-LBC scheme is narrower than 
that of the 2PWM scheme. Fig. 18 shows the autocorrelations and PSDs of the 2PWM-L and 
2PWM-LBC schemes described above. In Fig. 19, the PSDs are compared to those of the 3­
tap SSF and the 2PWM scheme. In Fig. 19, we can clearly see that the PSD for 2PWM-L is 
indeed very different from the others (in the baseband). The PSD for the 2PWM-LBC scheme 
(with B&C swapped) again matches the PSD of 3-tap SSF more closely. The second lobe for 
the 2PWM-LBC scheme has moved to the left a little bit (the PSD is narrower) compared to 
the 2PWM scheme, indicating that the switching frequency is lower. However, the power 
spectral density around 0.7Hz·Ts has increased. 

As an aside, we note that the PWM scheme described in Chapter 4 is in fact a subset of the 
2PWM-L and 2PWM-LBC schemes. We can obtain the previous PWM scheme by making 
the pulse-widths for singlets {A,B,C,D} in the 2PWM-L scheme equal to {d,d,d,d}, where d 
is the duty-cycle of the PWM scheme from Chapter 4.  

Fig. 18. Autocorrelations and PSDs for 2PWM-L and 2PWM-LBC schemes (from analytical 
and from statistical simulations). In some plots only the ‘analytical’ line can be seen because 
the ‘statistical’ line is right below it. (a) Autocorrelation for 2PWM-L. (b) Autocorrelation for 

2PWM-LBC. (c) PSD for 2PWM-L. (d) PSD for 2PWM -LBC. 
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Fig. 20. Alternative (theoretical) channel used for time domain simulations. (a) Channel loss. 
(b) pulse response (Ts=200ps). 

Fig. 19. PSDs for 3-tap SSF, 2PWM, 2PWM-L and 2PWM-LBC schemes. 

The question may arise of whether the 2PWM-LBC scheme also works for channels with 
lower loss levels. To evaluate this, time domain simulations were done with an alternative 
channel. The loss and pulse response for this channel are shown in Fig. 20. The channel has 
approximately 15dB loss at the Nyquist frequency of 2.5GHz. (The bit rate is again chosen to 
be 5Gb/s.) 

In Fig. 21, the eye diagrams of the response of this alternative channel to the 2PWM-L 
scheme (Fig. 21(a)) and to the 2PWM-LBC scheme (Fig. 21(b)) are shown. Clearly, the 
channel response to the 2PWM-LBC scheme shows a larger eye width, indicating that for this 
alternative channel, the phase relations between the singlets in the 2PWM-LBC scheme are 
also a better fit than those in the 2PWM-L scheme. 
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 (a) (b) 

Fig. 21. Eye diagrams of response of alternative channel to 2PWM-L input and to 2PWM­
LBC input, Ts=200ps. (a) 2PWM-L. (b) 2PWM-LBC. 


 

 

 

 
 

 

 

 

 
 
 

 

 

 

 

In conclusion, we have found an alternative 3-tap, 2-voltage-level PWM scheme that a gives a 
comparable eye opening as the 2PWM scheme while making less transitions per second. The 
pulse-widths were found by calculating them from the SSF filter taps with taps 1 and 3 
swapped. 

5.5. Conclusions 

We can extend the PWM pre-emphasis technique to a multitap version. The duty-cycle of this 
multitap PWM filter is a function of multiple bits instead of a function of only the current bit, 
as in Chapter 4. In this way, more complex filter transfer functions can be constructed, as with 
multitap FIR filters. We can use this for example to cancel reflections on backplane PCBs. 
The transmitter needs to switch between only two voltages, again allowing a transmitter 
implementation that is based on timing accuracy instead of on amplitude accuracy. The 
correct switch timing needs to be found as a function of multiple bits, in order to create the 
desired (effective) filter transfer function. This can be done by deriving the pulse-widths from 
the SSF filter taps by using a ‘same-area’ approach. 

Three 3-tap PWM filters were discussed: 
1) ‘3PWM’: three output voltage levels (-1V, 0V and 1V), 
2) ‘2PWM’: two output voltage levels (-1V and 1V), 
3) ‘2PWM-LBC’: two output voltage levels (-1V and 1V) and a reduced number of 

transitions. 

The ‘3PWM’ filter transmits, during the time length of one bit, first 0V, then 1V, then 0V 
again. The ‘2PWM’ filter transmits, during the time length of one bit, first -1V, then 1V and 
then -1V again. The ‘2PWM-LBC’ filter transmits first 1V, then -1V (less transitions). The 
voltage levels are inverted when the equivalent FIR filter would otherwise output a negative 
voltage. 

Time domain simulations show eye openings nearly equal to those of the equivalent 3-tap 
SSF filter. 
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The power spectral density functions of the 3-tap PWM filters are calculated using their 
autocorrelation functions. At frequencies around the Nyquist frequency, these filters have a 
higher power spectral density than the SSF filter due to harmonic signals, inherent to PWM.  
A system designer should weigh up this side-effect of PWM against the abovementioned 
advantage of using a transmission equalizer that needs to switch between only two voltages. 
As long as the channel has a low-pass transfer function, the high-frequency part of the 
spectrum will be filtered out by the channel. 

The ‘2PWM-LBC’ filter reduces the number of transitions compared to the ‘2PWM’ scheme. 
This reduces the HF energy transmitted, since the PSD is narrowed. However, shifting the 
pulses to the left disturbs their phase relations. Using transient simulations, it was found that 
the receiver eye diagram can be opened up again by using pulse-widths calculated from the 
SSF filter taps with taps 1 and 3 swapped. The resulting eye opening is nearly the same as for 
the ‘2PWM’ scheme. 

122
 




